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Abstract

In this paper, we present two number-theoretic functionsF andG for which prF (n)−pr−1G (n)
is both positive and negative infinitely often, where n has at least k distinct prime factors (k ≥ 1)
and (pr−1, pr) is a couple of two consecutive primes. To be precise, we will construct infinite
sequences (ni)i≥1 , (mi)i≥1 such that,
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>

pr−1

pr
>
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G (mi)
, for i = 1, 2, . . . ,

where each ni and mi has k distinct prime factors and F (t) and G (t) are either the Kernel or
the Euler’s function of the positive integer t.
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1 Introduction

Let γ (n) and φ (n) be the Kernel and the Euler’s function of the positive integer n, respectively.
Recall that if n has the prime factorization n = qa1

1 qa2
2 . . . qak

k with distinct primes q1, q2, . . . , qk and
positive, integers a1, a2, . . . , ak, then,

γ (n) = q1q2 . . . qk,

and

φ (n) = qa1−1
1 (q1 − 1) qa2−1

2 (q2 − 1) . . . qak−1
k (qk − 1) .

There aremany questions in the literature dealing with diophantine equations and inequalities in-
volving number-theoretic functions as well as the Euler’s function and other multiplicative func-
tions. For example, in [9, p. 99], Erdös asked to prove that φ (n) > φ (n− φ (n)) for almost all
n, but that φ (n) < φ (n− φ (n)) for infinitely many n. That is, φ (n) − φ (n− φ (n)) may change
signinfinitely often. Also, there are many papers on infinitely many signchanges. For example,
it is shown that σ (φ (n)) − φ (σ (n)) is positive and negative infinitely often, see also [9, p. 99],
where σ (n) computes the sum of the positive divisors of n.

Letm and a be relatively prime positive integers. We denote by π(x;m, a) the number of prime
numbers p ≤ x such that p ≡ a(mod m). In the case m = 4, Littlewood [10, 14] proved that
π(x, 4, 1) − π(x, 4, 3) changes sign infinitely often. Further, in view of the papers [2, 3], signifi-
cant works have been done on the sign changes of the Liouville function on quadratics and sign
changes in sums of the Liouville function, respectively. Indeed, the authors proved that the binary
sequence {λ (an2 + bn+ c

)}
n≥A0

with a ∈ N and b, c ∈ Z is either constant or it changes sign in-
finitely often, whereA0 is a fixed integer depending only on a, b and c, and λ denotes the Liouville
function.

Recently, Rishabh and Chakraborty [1] studied similar problems on the sign changes of certain
arithmetical functions at prime powers. In the same context, consider the difference,

F (n)− α ·G (n) , n ≥ 1, (1)

where F,G are two number-theoretic functions and α ∈ R is understood as a parameter. Through-
out this paper, α = α (r) = pr−1/pr, where pr denotes the r-th prime number. Our purpose in this
paper is to provide an improvement on a recent result [7] of the first author regardingwhether (1)
changes sign infinitely often or not. The primary goal of this work is summarized in the following
two points. Indeed, we give a rational approximation to the parameter α. In the papers [7, 11],
the authors studied the application of nonstandard analysis in the field arithmetic functions by
interpreting large as unlimited (infinite, nonstandard) and close to as having a limited (finite, stan-
dard) difference. In the present work, we will apply some ideas from these papers where we use
positive integers having unlimited number of distinct prime factors or unlimited prime powers,
i.e., unlimited positive integers power of a single prime number.

Let n ∈ N. We denote by ω(n) the number of distinct prime factors of n. For any k ∈ N, define
the subsetWk by,

Wk = {n ∈ N : ω (n) ≥ k} .

That is,Wk consists of all positive integers nwhose number of distinct prime factors is larger than
or equal to k. In the present paper, we shall continue the research from [7]. In fact, let pr be the
r-th prime number and let α = pr−1/pr. Let F,G be two arithmetic functions formed by γ and
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φ. Throughout our discussion, we will mostly deal with the sign changes of prF (n)− pr−1G (n),
where n ∈Wk. More precisely, we will prove that there are infinitely many n ∈ Wk for which,

prF (n) > pr−1G (n) , (2)

and also there are infinitely manym ∈ Wk for which,

prF (m) < pr−1G (m) . (3)

Or, equivalently, we will construct two infinite sequences {ni}i≥1 , {mi}i≥1 ⊂ Wk such that,

F (ni)

G (ni)
>

pr−1

pr
>

F (mi)

G (mi)
, for i = 1, 2, . . . .

Thus, as a continuation of our works [7, 8], we confine the number pr−1/pr from the right and
from the left by an infinity of rational numbers for each. Moreover, in this paper we will study
possibilities for proving (2) and (3) infinitely often over some infinite subsets ofWk.

The following section describes some important definitions and theorems that are needed
throughout this paper.

2 Basic Tools and Preliminaries

Throughout thiswork, 2 = p1 < p2 < . . . < pn < . . . will denote the successive prime numbers.
The sequence q1 < q2 < . . . < qn < . . . denotes an arbitrary sequence of primes. We also denote
by dn−1 the gap between pn and pn−1 for n ≥ 2. That is,

dn−1 = pn − pn−1. (4)

Note that the Prime Number Theorem (PNT) is equivalent to pn ∼ n log n, and hence,

lim
n→+∞

pn
dn

= +∞. (5)

The nonstandard version of (5) is given by the following formula,
pn
dn

≃ +∞. (6)

Then for every k ≥ 1, we can choose two positive integers r, swith r ≥ 2 such that,

pk <

(
1 +

pr−1

dr−1

) 1
s
. (7)

For example, assume that k = 5216954. It is enough to choose,

pr−1 = 49445926814519393317172147,

where

pr = 49445926 814519 393317172203.
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We see that dr−1 = pr − pr−1 = 56. Thus, for s = 3, we obtain,

pk = 89999999 <

(
1 +

pr−1

dr−1

) 1
s

=

(
1 +

49445926814519393317172147

56

) 1
3

,

= 90000000.59.

Next, we state the explicit formula of the Jordan generalization of Euler’s function in terms of
the standard factorization of n [17, p. 194]. That is, the multiplicative function,

φs (n) = ns
∏
p|n

(
1− 1

ps

)
, φs (1) = 1, (8)

where φ1 = φ. Moreover, φs (n) is even for every n > 2. Recall that for anym,n ∈ N, we have,

φ (mn) =
d

φ (d)
· φ (m)φ (n) , (9)

where d = (m,n). We also note that if n is divisible bym, then φ (n) is divisible by φ (m). Further,
we will use the subset Ar,s defined for any r, s ∈ N by,

Ar,s = {n ∈ N : prφs (n) > pr−1n
s} . (10)

We recall Dirichlet’s Theorem, Bertrand’s Theorem and a result on good primes, which will be
applied in our proofs.
Theorem 2.1 (Theorem of Dirichlet about primes, [15, p. 347]). If a and b are relatively prime integers
with a ≥ 1, then the sequence an+ b includes infinitely many primes.

Theorem 2.2 (Theorem of Bertrand [21, p. 24]). For any n ∈ N, there exists a prime number
p ∈ [n, 2n].

Recall that Erdös and Strauss call a prime pn good if p2n > pn−ipn+i for all values of i from 1 to
n − 1, see [20, p. 119]. The sequence of good primes starts with 5, 11, 17, 29, . . . . In this context,
we need to use the following result:
Theorem 2.3 ([9, p. 32]). There are infinitely many good primes.

Also, we will use the following notation:
Notation 2.1. Let n be a positive integer, and let F : N→ R be a number-theoretic function.

• For every positive integerN , we denote by FN the arithmetic function given by FN (n) = (F (n))N .

• We write pa ∥ n if pa is the largest power of p that divides the integer n, that is, padivides n but pa+1

does not divide n.

Now, we explain the nonstandard settings [4, 6] and notations used in this paper. The study of
small quantities was first established by Leibniz, the first mathematician to attempt to articulate
clearly the concept of small quantities, also known as infinitesimal numbers. Robinson developed
the notion of infinitesimal in his book [19] on Nonstandard Analysis. Another presentation of the
nonstandard analysis [12], called IST (Internal Set Theory), introduced by EdwardNelson in 1977
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[16] which was based on ZFC to which is added a new unary predicate called "standard". This
predicate gave us the following three axioms: Transfer principle, Idealization principle and Standard-
ization principle.

Recall that any real number used in a classical way is necessarily standard. Thus, 0, 1, . . .,
101000, π, . . ., 1/e are standard. But not all real numbers are standard.
Definition 2.1 ([5]). Let x be a real number.

1. x is said to be limited if there exists a standard n ∈ N such that |x| ≤ n.

2. x is said to be unlimited, or infinitely large, if x is not limited. That is, |x| > n for every standard
n ∈ N∗ which we denote by x ≃ +∞.

3. x is said to be infinitesimal, or infinitely small, if |x| ≤ 1/n for every standard n ∈ N∗, in which case
we write x ≃ 0.

4. x is is said to be appreciable if x is limited but not infinitesimal.

Recall that Nσ denotes the set of all limited positive integers. We denote by ϕ and £ for an
arbitrary infinitesimal real number and an arbitrary limited real number, respectively. For details,
see [5, p. 3]. Clearly, if ω is unlimited, then 1/ω is infinitesimal. The converse is true, namely if ϕ
is infinitesimal then, 1/ϕ is unlimited. Further, we have the following facts:

• a ∈ Z is limited if and only if a is standard.
• If x is limited and y is unlimited and positive, then x < y.
• If ϕ is infinitesimal and a is appreciable, then ϕ < |a|. Thus, zero is the only standard in-

finitesimal real number.

Note that any formula in the language ZFC is called internal. However, a formula of the non-
standard language IST which deals the new predicate standard is called external. The formulas:
[x < ε ⇒ x < 2ε], [0,+∞) ⊂ R and ε ̸= 0 are internal because the symbols <, 2, ε, 0,+∞,⊂ R, ̸=
are definable in the language ZFC. Examples of external formulas are the formulas: p ∈ N is prime
and p ≃ +∞, x ≃ +∞ ⇒ x2 ≃ +∞, ϕ ≃ 0 and ∀a ∈ R (a is limited⇏ a is appreciable).

Note that external sets are outside IST, however, a complimentary axiomatic is given in [12].
We conclude that {x ∈ R; |x| ≤ ε}, {p ∈ N; p is prime and p > 1/ε} are internal whereas the two
sets {x ∈ R;x ≃ 0} and {p ∈ N; p is prime and p ≃ +∞} are external. Observe that a set defined
bymeans of an external formula is not necessarily external because sometimes an external formula
is equivalent to an internal formula. For example, in [5], it is shown that the set
{x ∈ R : x is standard and x ≃ 0}which is equal to 0, is both internal and standard.

We recognize that in nonstandard literaturewe find several points of view to define an external
set [12, 18] and this reflects the problematic posed by this notion. In this article, we opt for the
following definition.

The following theorems are important for the proof of our results.
Theorem 2.4 (Cauchy’s principle [5, p. 19]). No external set is internal.

Theorem 2.5 ([4, p. 16]). Let (un)n≥1 be a standard sequence of elements of R. Then, (un)n≥1 converges
to l if and only if un ≃ l for all unlimited n.
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As a consequence of the PNT in the form pn ∼ n logn, Cauchy’s principle and Theorem 2.5 is
given in the following example.
Example 2.1. Let n be unlimited. By using the PNT and Theorem 2.5, pn/pn−1 = 1 + ϕn, where ϕn is
infinitesimal positive. Thus, for every limited prime number q, we have 1 +

1

q
> 1 + ϕn. It follows from

Cauchy’s principle that there exists an unlimited prime number ∼
q such that 1/∼q > ϕn. Then,

∼
q ≤ [1/ϕn] ≃ +∞ where the expression [x] represents the integer part of x.

In another example, we show that if ω is an unlimited positive integer, then there exists an
unlimited prime number p such that p < ω.
Example 2.2. Let ω be an unlimited positive integer, and consider the internal set L = {n ∈ N ; pn < ω}.
Since the sequence (pn)n≥1 of prime numbers is standard, L contains all the standard integers. Then by
Cauchy’s principle, L contains an unlimited positive integer ν. Hence, pν < ω. Since the sequence (pn)n≥1

is increasing, we conclude that pν is unlimited.

Note that the use of positive integers having sufficiently large number of distinct prime factors
was made precise in the framework of nonstandard analysis by interpreting "sufficiently" large as
unlimited. Let us define two infinite subsets of positive integers that we shall use at the end of
Section 3 and Section 4.
Definition 2.2. LetW∞ be the subset of N given by,

W∞ = {n ∈ N : ω (n) ≃ +∞} .

That is, W∞ has only unlimited positive integers n, where its number of distinct prime factors is also
unlimited. Let W∞ ⊂ W∞ denotes the set of all unlimited positive integers n satisfying the following two
conditions:

1. ω (n) ≃ +∞,

2. Any divisor d of n with d ̸= 1 is unlimited. That is, any proper divisor of n is unlimited.

Thus,W∞ has only odd numbers. Also, for any limited k ≥ 1, we see that,

. . . ⊂ W∞ ⊂ W∞ ⊂ Wk ⊂ Wk−1 ⊂ . . . ⊂ W1 = N0,

whereWk ⊈ W∞.

Let n = qα1
1 qα2

2 . . . qαs
s , where q1, q2, . . . , qs are distinct primes and α1, α2, . . . , αs ∈ N are posi-

tive. We have,

• n ∈ W∞ if and only if s ≃ +∞.
• n ∈ W∞ if and only if s ≃ +∞ and qi ≃ +∞ for i = 1, 2, . . . , s.

It is clear that if a Diophantine inequality has infinitely many solutions on the set Wk, it may
not necessarily have infinitely many solutions on the set Wk+1, and so on. For example in [7],
under the condition (7), it is proved that prφs(n)−pr−1n

s has infinitely many sign changes on the
set Wk. But, it does not follow directly that the same expression has infinitely many sign changes
on the subsetsW∞,W∞. These questions and other similar questions are addressed in this work.
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This manuscript is organized in the following way: In Section 2, we introduce some basic facts
and notations thatwill appear in the proof of our results. In Section 3, wewill prove that prγN (n)−
pr−1γ

N (n+ l) has infinitely many sign changes, where n belongs to a certain infinite subset of
Wk. In the proof, we will use Dirichlet’s Theorem about primes in arithmetic progressions and
Bertrand’s Theorem. In the framework of internal set theory, the same expression will be studied
using infinite external subsets. Finally, in Section 4, we take a look at the corresponding question
for prφs (n)− pr−1 n

s, where s ≥ 1.

We are also concerned with the set Ar,s given in (10). For example, in Theorem 4.1, we show
that there are infinitely many n ∈ W∞ such that n ∈ Ar,s. In the case when r is unlimited and s is
limited, we prove the existence of a multiply perfect number N with N /∈ Ar,s. Moreover, under
some conditions, we are able to show that prφs (n)−pr−1 n

s changes sign infinitely often on the set
W∞. The method of proof involves some results in elementary number theory and nonstandard
analysis as well as the Prime Number Theorem and Cauchy’s Principle for showing that if r is
unlimited and s is limited, then prφs (n) < pr−1n

s holds for infinitely many n ∈ W∞.

3 Sign Changes Using the Kernel of Positive Integers

Let l, N, r ∈ N with r ≥ 2. Throughout this section, for any n ≥ 1, we study the sign changes
for γN (n) and γN (n+ l). Note that prγN (n) > pr−1 γ

N (n+ l) does not guarantee that we have

prγ(n) > pr−1 γ(n+ l), since γN (n) ≥ γ (n) and pr−1

pr
≤
(
pr−1

pr

) 1

N . Thus, the fact that
prγ

N (n)− pr−1 γ
N (n+ l) changes sign infinitely often does not follow from the fact that

prγ(n)−pr−1 γ(n+l) changes sign infinitely often. In addition, for some infinite subsets of positive
integers U, V with U ∩ V = ∅, we may derive the existence two infinite increasing sequences (ni)
and (mi) such that prγN (ni) > pr−1 γ

N (ni + l) and prγ
N (mi) < pr−1 γ

N (mi + l) for i ≥ 1.

We first deal with the inequality prγ
N (n) > pr−1 γ

N (n+ l), where n is square-free.
Proposition 3.1. Let l, k,N ≥ 1. There exists an infinite subsetW ofWk which has the property: for each
n ∈ W, one has, {

prγ
N (n) > pr−1 γ

N (n+ l), if n is square-free,
prγ

N (n) < pr−1 γ
N (n+ l), otherwise.

For the proof we need the following lemma. First, let Ci
N be the binomial coefficients,

Ci
N =

N !

i! (N − i)!
for 0 ≤ i ≤ N.

Lemma 3.1. Let dr−1 be given by (4). Let (q1, q2, . . . , qk) be a k-tuple of distinct primes such that,

q1q2 . . . qk > l
(
2N − 1

) pr−1

dr−1
, (11)

and

(q1q2 . . . qk, l) = 1, (12)
where l, k,N ≥ 1. Then,

N∑
i=1

Ci
N li

(q1q2 . . . qk)
i
<

dr−1

pr−1
,
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for i = 1, 2, . . . , N .

Proof. From Bertrand’s Theorem, pr−1

dr−1
> 1. Hence, by (11), we have,

(q1q2 . . . qk)
i
> li

(
2N − 1

) pr−1

dr−1
, for every i ≥ 1,

and so,

Ci
N li

(q1q2 . . . qk)
i
<

(
1

2N − 1

dr−1

pr−1

)
Ci

N . (13)

On the other hand, since
N∑
i=0

Ci
N = 2N , it follows, from (13) that,

N∑
i=1

Ci
N li

(q1q2 . . . qk)
i
<

N∑
i=1

Ci
N

2N − 1

dr−1

pr−1
=

dr−1

pr−1
. (14)

As required.

Proof of Proposition 3.1. Let W ′ = {q1q2 . . . qk} be the set which contains one element q1q2 . . . qk,
where q1, q2, . . . , qk are distinct primes as in (11) and (12), and define,

W ′′ = {t ∈ N : q1q2 . . . qk t+ l is prime } .

It follows from Theorem 2.1 that W ′′ is infinite. Let W = W ′W ′′, where the product set W ′W ′′

consists of all elements abwith a = q1q2 . . . qk and b ∈W ′′. Clearly,W is an infinite subset ofWk.

Now, let nt = q1q2 . . . qk t ∈ W , i.e., t ∈ W ′′. We see that,

γN (nt + l)

γN (nt)
=

(nt + l)
N

γN (nt)
=

(
nt

γ (nt)

)N

+ εnt ,

where

εnt
=

N∑
i=1

Ci
NnN−i

t li

γN (nt)
=

(
nt

γ (nt)

)N N∑
i=1

Ci
N li

ni
t

.

Therefore,

γN (nt + l)

γN (nt)
=


1 +

N∑
i=1

Ci
N li

ni
t

, if nt is square-free,∏
pa∥nta>1

pN(a−1) + εnt
, otherwise.

(15)

From Lemma 3.1 and since nt ≥ q1q2 . . . qk, we obtain,
N∑
i=1

Ci
N li

ni
t

≤
N∑
i=1

Ci
N li

(q1q2 . . . qk)
i
<

dr−1

pr−1
. (16)
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In the case when nt is square-free, by (15) and (16), we have,

γN (nt + l)

γN (nt)
= 1 +

N∑
i=1

Ci
N li

ni
t

≤ 1 +

N∑
i=1

Ci
N li

(q1q2 . . . qk)
i
<

pr
pr−1

,

and in the case when nt is not square-free, by (15) and Bertrand’s Theorem we also have,

γN (nt + l)

γN (nt)
=
∏

pa∥nt

a>1

pN(a−1) + εnt
≥ 2 + εnt

>
pr

pr−1
.

The proof is finished.
Remark 3.1. In view of the proof of Proposition 3.1, we can not deduce that prγN (n) − pr−1 γ

N (n + l)
changes sign infinitely often on the setW = W ′W ′′. Of course, at least one of the inequalities
prγ

N (n) > pr−1 γ
N (n + l) and prγ

N (n) < pr−1 γ
N (n + l) holds infinitely often. In fact, it is an open

question as to whether there are infinitely many primes of the form q1q2 . . . qk t+ l such that t is square-free.
Also, it is not known whether there are infinitely many primes of the same form such that t is not square-free.

Using a similar reasoning as in Proposition 3.1 and the fact that the set of all k-tuples (q1, q2, . . . , qk)
satisfying (11) is infinite, we can prove the following result:
Theorem 3.1. Let pr be the r-th prime number with r ≥ 2 and let k, l;N ≥ 1. Then,
prγ

N (n)− pr−1 γ
N (n+ l) has infinitely many sign changes on the setWk.

Proof. We prove that each of the inequalities,

prγ
N (n) > pr−1 γ

N (n+ l) and prγ
N (n) < pr−1 γ

N (n+ l),

holds for infinitely many n ∈ Wk. We show the first inequality by using the fact that the set of k-
tuples satisfying (11) is infinite. Let (q1, q2, . . . , qk) be a k-tuple of distinct primes satisfying (11).
We put qk = pi0 , where pi0 is the i0-th prime number, and define ns for any s ≥ 0 by,

ns = q1q2 . . . qkpi0+1 . . . pi0+s, (17)

which is square-free. Moreover, we see that ns ∈ Wk. Since,

γ(ns + l) ≤ ns + l and γ(ns) = ns ≥ q1q2 . . . qk,

we have by Lemma 3.1,

γN (ns + l)

γN (ns)
≤ (ns + l)N

nN
s

(18)

= 1 +

N∑
i=1

Ci
NnN−i

s li

nN
s

= 1 +

N∑
i=1

Ci
N li

ni
s

≤ 1 +

N∑
i=1

Ci
N li

(q1q2 . . . qk)
i
<

pr
pr−1

= 1 +
dr−1

pr−1
. (19)
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Note that the prime numbers q1, q2, . . . , qk satisfy (11), and so the right-hand side of (19) holds.
Combining (18) and (19), we obtain,

γN (ns + l)

γN (ns)
<

pr
pr−1

.

The desired inequality is proved.

We next show the second inequality. Let (q1, q2, . . . , qk) be a k -tuple of distinct primes satisfy-
ing (12). By Theorem 2.1, there are infinitely many primes of the form q21q

2
2 . . . q

2
k t + l. Let p be

a prime of this form, and set nt = p − l = q21q
2
2 . . . q

2
k t which is an element of Wk (i.e., there are

infinitely many such numbers). Therefore,
γN (nt + l)

γN (nt)
=

(nt + l)N

γN (nt)
(20)

=
nN
t

γN (nt)
+

N∑
i=1

Ci
NnN−i

t li

γN (nt)

=
nN
t

γN (nt)

1 +

N∑
i=1

Ci
N li

ni
t


>

nN
t

γN (nt)
≥ nt

γ (nt)
. (21)

Now, it suffices to prove that,
nt

γ (nt)
≥ q1q2 . . . qk

t

γ (t)
.

Suppose we have t = a.b such that,
a = qα1

1 qα2
2 . . . qαk

k ; αi ≥ 0 , for i = 1, 2, . . . , k,

and
b = lβ1

1 lβ2

2 . . . lβs
s ; βj ≥ 0 , for j = 1, 2, . . . , s,

where l1, l2, . . . , ls are distinct primes satisfying lj /∈ {q1, q2, . . . , qk}, for j = 1, 2, . . . , s. Since
γ (b) ≤ γ (t) ≤ t and (a, b) = 1, it follows from Bertrand’s Theorem that,

nt

γ (nt)
=

q21q
2
2 . . . q

2
k t

γ (q21q
2
2 . . . q

2
k t)

= q1q2 . . . qk
t

γ (b)
≥ q1q2 . . . qk

t

γ (t)
≥ 2 >

pr
pr−1

. (22)

Combining (20), (21) and (22), we get,
γN (nt + l)

γN (nt)
>

pr
pr−1

.

Thus, the desired inequality holds infinitely often. This completes the proof.

Now,weprove the existence of an infinite proper subset ofWk forwhich prγN (n)−pr−1 γ
N (n+ l)

changes sign infinitely often. Let Al(c) and Bl(c) be the subsets of N given by,
Al(c) =

{
n ∈ N : 2c−1 | n+ l, 2c ∤ n and 2c ∤ n+ l

}
,

and Bl(c) =
{
n ∈ N : 2c−1 | n, 2c ∤ n and 2c ∤ n+ l

}.
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Theorem 3.2. Let c, k, l, N, r be positive integers with c, r ≥ 2. If k ≥ 3 and l is odd, then,

1. Wk ∩Al(c),Wk ∩Bl(c) are infinite.

2. prγN (n)− pr−1 γ
N (n+ l) has infinitely many sign changes on the setWk ∩ (Al(c) ∪Bl(c)).

Proof. We prove the theorem as follows:

1. We show thatWk ∩Al(c) is infinite. Let s be integer with s ≥ k. Since,
(2c, 1) = 1,

(
2c, 2c−1 + 1

)
= 1 and (2c, l) = 1,

byTheorem2.1, there exists an s-tuple of distinct primes (q1, q2, ..., qs) such that q1, q2, . . . , qs−2

are all of the form 2ct + 1, qs−1 is of the form 2ct + 2c−1 + 1 and qs is of the form 2ct − l,
respectively. We set, 

q1q2 . . . qs−2 = 2c−1t+ 1,

qs−1 = 2c−1t′ + 1,

qs = 2c−1t′′ − l,

for some positive integers t, t′, t′′ with t, t′′ are even and t′ is odd. It follows that,
q1q2 . . . qs−2qs−1qs =

(
2c−1t+ 1

) (
2c−1t′ + 1

) (
2c−1t′′ − l

)
= 2c−1

(
t′′ + 2c−1tt′′ + 2c−1t′t′′ + 2c−2tt′t′′ − 2c−1ltt′ − tl − t′l

)
− l

= 2c−1b− l,

where b = t′′
(
1 + 2c−1t+ 2c−1t′ + 2c−2tt′

)
− l
(
t+ t′ + 2c−1tt′

) is odd. Define the square-
free numbers,

ns = q1q2 . . . qs = 2c−1b− l, (23)
for some odd b ≥ 1 with s ≥ k. We see that there are infinitely many s such that ns ∈ Wk,
2c−1 divides ns + l and 2c does not divide neither ns nor ns + l.

2. We show that Wk ∩ Bl(c) is infinite. Let (2, q2, . . . , qk) be a k-tuple of distinct primes such
that (2q2 . . . qk, l) = 1. We can easily prove that,(

2cq2 . . . qk, 2
c−1q2 . . . qk + l

)
= 1. (24)

In fact, assume that (2cq2 . . . qk, 2c−1q2 . . . qk + l
)

= d > 1. Note that d can not be even
because d divides 2c−1q2 . . . qk + l which is odd. Hence, d is divisible by at least one prime
qio for some i0 ∈ {2, . . . , k}, and therefore,

qio | 2c−1q2 . . . qk + l.

That is, qio divides l which is impossible since (q2q3 . . . qk, l) = 1. This proves (24). Thus,
there exist infinitely many primes of the form,

2cq2 . . . qkt+ 2c−1q2 . . . qk + l.

On the other hand, we see that,
2cq2 . . . qkt+ 2c−1q2 . . . qk + l = 2c−1q2 . . . qk (2t+ 1) + l. (25)

This means that there exist infinitely many primes of the form 2c−1q2 . . . qkt + l, where t is
odd. For each such integer t, let nt = 2c−1q2 . . . qk t. Hence, nt ∈ Wk, 2c−1 divides nt and 2c

does not divide neither nt nor nt + l.
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3. We prove the inequality prγ
N (n) > pr−1γ

N (n+ l) for infinitely many n ∈ Wk ∩ Al(c). In
fact, let (q1, q2, . . . , qs) be a s-tuple of distinct primes satisfying both (11) and (23). That
is, q1q2 . . . qs is strictly larger than l

(
2N − 1

) pr−1

dr−1
and q1q2 . . . qs is of the form 2c−1b − l,

where b is odd and s ≥ k. Taking ns = q1q2 . . . qs which is an element of Wk ∩ Al(c), the
result we must prove follows immediately by applying the inequalities stated in the first
part of the proof of Theorem 3.1. Indeed, ns is square-free as in (17), and so the inequality
prγ

N (ns) > pr−1γ
N (ns + l) comes from (18) and (19).

4. We prove the inequality prγ
N (n) < pr−1γ

N (n+ l) for infinitely many n ∈ Wk ∩ Bl(c). Let
(2, q2, . . . , qk) be a k -tuple of distinct primes satisfying (12). By the same method used in
the proof of (24), we have, (

2cq22 . . . q
2
k, 2

c−1q22 . . . q
2
k + l

)
= 1,

from which it follows that there are infinitely many primes of the form,

2c−1q22 . . . q
2
kt+ l,

where t is odd. We letnt = 2c−1q22 . . . q
2
ktwhich is an element ofWk∩Al(c). By applying (20),

(21) and (22) for nt = 2c−1q22 . . . q
2
ktwe obtain the inequality prγ

N (nt) < pr−1γ
N (nt + l).

Hence, by the above, prγN (n+ l)− pr−1 γ
N (n) has infinitely many sign changes on the set

(Wk ∩Al(c)) ∪ (Wk ∩Bl(c)). The proof of Theorem 3.2 is now complete.

Next, we deal with the sign changes of prγN (n+ l)− pr−1 γ
N (n) using some infinite external

subsets ofWk. We will start by proving the following proposition.
Theorem 3.3. The setsW∞ andW∞ are external.

Proof. Suppose, by way of contradiction, that W∞ is internal. Since p1p2 . . . pn /∈ W∞ for every
n ∈ Nσ (n ≥ 1), by Cauchy’s principle, there exists an unlimited positive integer ω such that
p1p2 . . . pω /∈ W∞. This is a contradiction since p1p2 . . . pω having ω prime factors, and by Defini-
tion 2.2, p1p2 . . . pω ∈ W∞.

Similar argument shows that W∞ is external. Suppose, to the contrary, that W∞ is internal.
Let ω be an unlimited integer and let pω be the ω-th prime number which is necessarily unlimited.
Consider the set,

{n ∈ N : pωpω+1 . . . pω+n /∈ W∞} ,

which is internal and contains all the standard integers of N. By Cauchy’s principle, this set con-
tains an unlimited positive integer ν, that is, pωpω+1 . . . pω+ν /∈ W∞. This is a contradiction since
pωpω+1 . . . pω+ν clearly belongs toW∞.

Let us use the external subsets W∞ andW∞ to obtain nonclassical results.
Theorem 3.4. Let c, k, l, r be positive integers with c ≥ 3 and r ≥ 2. If k ≥ 3 and l is odd, then
prγ (n+ l)− pr−1 γ (n) has infinitely many sign changes on the set W∞ ∩ (Al(c) ∪Bl(c)).

We need the following lemma.
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Lemma 3.2. Let r ≥ 2. For every ϕ ≃ 0,

pr
pr−1

= 1 +
dr−1

pr−1
< 2− ϕ. (26)

Proof. If r is unlimited, then by (6) dr−1

pr−1
≃ 0 fromwhich it follows that 1+ dr−1

pr−1
< 2−ϕ for every

ϕ ≃ 0. But, if r is limited, then dr−1

pr−1
is standard and strictly less than 1 from Bertrand’s Theorem.

In this case, dr−1

pr−1
< 1− ϕ for every ϕ ≃ 0; otherwise, dr−1

pr−1
≥ 1− ϕ′ for some ϕ′ ≃ 0, from which

we get 2− pr/pr−1 ≤ ϕ′, i.e., pr/pr−1 ≃ 2, a contradiction. This proves (26).

Proof of Theorem 3.4. Let s be an unlimited positive integer. As in the proof of Theorem 3.2, we can
show that prγ (n+ l)− pr−1 γ (n) is positive and negative for infinitely many
n ∈ Ws ∩ (Al(c) ∪Bl(c)), which is a subset ofW∞ ∩ (Al(c) ∪Bl(c)).

First, let (2, q2, q3, . . . , qs) be a s-tuple of distinct primes satisfying (23). Set,

q1q2 . . . qs + l = 2c−1Ns ; (2, Ns) = 1. (27)

For ns = q1q2 . . . qs, we have ns ∈ Ws ∩Al(c). Moreover, we see that,
γ (ns)

γ (ns + l)
=

q1q2 . . . qs
γ (q1q2 . . . qs + l)

=
2c−1Ns − l

2γ (Ns)
(28)

=


2c−2 − l

2γ (Ns)
, if Ns =

∏
p∥Ns

p,

2c−2
∏

pa∥Ns

a>1

pa−1 − l

2γ (Ns)
, otherwise.

We distinguish two cases:

Case 1: Assume that γ (Ns) is unlimited. Then,

ϕs ≡
l

2γ (Ns)
≃ 0.

If Ns is square-free, then by Lemma 3.2 we have,
γ (ns)

γ (ns + l)
= 2c−2 − ϕs ≥ 2− ϕs >

pr
pr−1

,

and if Ns is not square-free we also have,
γ (ns)

γ (ns + l)
= 2c−2

∏
pa∥Ns

a>1

pa−1 − ϕs ≥ 2− ϕs >
pr

pr−1
.

Case 2: Assume that γ (Ns) is limited. From (27), it is easy to see that 2c−1Ns is unlimited, and
so (28) implies,

γ (ns)

γ (ns + l)
=

2c−1Ns − l

2γ (Ns)
≃ +∞,
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since l is limited. Therefore,
γ (ns)

γ (ns + l)
>

pr
pr−1

,

the later being limited. Thus, we obtain the desired inequality.

Second, as in (24) and (25), we can choose a s-tuple of distinct primes (2, q2, q3, . . . , qs)
such that the following arithmetic progression:

2c−1q2q3 . . . qs t+ l; t ∈ N,

contains infinitely many primes with t is odd. For each such t set nt = 2c−1q2q3 . . . qs t.
Then nt ∈ Ws. Moreover, it is clear that nt ∈ Bl(c) since q2q3 . . . qs t is odd and nt + l is
prime. Thus,

γ (nt)

γ (nt + l)
≤ nt

nt + l
<

pr
pr−1

. (29)

This proves the inequality prγ (nt + l) > pr−1 γ (nt).

Theorem 3.4 is proved.

We close this section by proving the following proposition.
Proposition 3.2. Let l, N, r ∈ N with r ≥ 2. If N, r are limited, then pr−1γ

N (n+ l) − dr−1γ
N (n)

changes sign infinitely often on the set W∞.

Before proving Proposition 3.2, we need the following lemma.
Lemma 3.3. Let l,m, k be positive integers and let p be an odd prime number. If l is odd, then 2m divides
n+ l for infinitely many n ∈ Wk and if l is even, then pm divides n+ l for infinitely many n ∈ Wk.

Proof. First, assume that l is odd. For every positive integer s ≥ 2, there exists a s-tuple of distinct
primes (q1, q2, . . . qs) such that qi (1 ≤ i ≤ s−1) is of the form 2mt+1 and qs is of the form 2mt− l.
Therefore, the integer ns = q1q2 . . . qs is of the form 2mt− l. This means that n ∈ Wk and 2m | n+ l.
If l is even, then we repeat the same idea to show that there are infinitely many n ∈ Wk such that
pm divides n+ l by taking primes of the form pmt+ 1 and pmt− l, respectively.

Proof of Proposition 3.2. It suffices to prove the following statements:

I) There are infinitely many n ∈ W∞ such that pr−1γ
N (n+ l) < dr−1γ

N (n). Let s be an
unlimited positive integer, and choose an unlimited positive integerm for which 2m

l
≃ +∞.

We distinguish two cases:
Case 1: Assume that l is odd. By Lemma 3.3, there exist primes (qi)1≤i≤s such that 2m

divides q1q2 . . . qs + l. We set q1q2 . . . qs + l = 2aNs, where (2, Ns) = 1 and a ≥ m.
For ns = q1q2 . . . qs ∈ W∞, we have,

γ (ns)

γ (ns + l)
=

2aNs − l

2γ (Ns)
. (30)
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Since γ (Ns) ≤ Ns and
l

2a
≃ 0, it follows from (30) that,

γN (ns)

γN (ns + l)
≥ 2a−1

Ns −
l

2a

Ns


N

= 2a−1 (1− ϕ1)
N ≃ +∞, (31)

where ϕ1 =
l

2aNs
≃ 0 and (1− ϕ1)

N ≃ 1. It follows that,

γN (ns)

γN (ns + l)
>

pr−1

dr−1
, (32)

since pr−1

dr−1
is appreciable.

Case 2: Assume that l is even. By Lemma 3.3, there exist primes (q′i)1≤i≤s such that 3m
divides q′1q′2 . . . q′s+ l. Similarly, assume that q′1q′2 . . . q′s+ l = 3bN ′

s where (3, N ′
s) = 1

and b ≥ m. For n′
s = q′1q

′
2 . . . q

′
s, using (31) and (32) as above,

γN (n′
s)

γN (n′
s + l)

≥ 3b−1

N ′
s −

l

3b

N ′
s


N

= 3b−1 (1− ϕ2)
N

>
pr−1

dr−1
,

where ϕ2 =
l

3bN ′
s

≃ 0 and (1− ϕ2)
N ≃ 1.

II) There are infinitely many n ∈ W∞ such that pr−1γ
N (n+ l) > dr−1γ

N (n). Indeed, let s be
unlimited and let nt = q1q2 . . . qst be defined as in the proof of Proposition 3.1, i.e., nt + l is
prime. Therefore,

γN (nt)

γN (nt + l)
≤
(

nt

nt + l

)N

≤ nt

nt + l
<

pr−1

dr−1
.

Then, clearly the desired inequality holds for infinitely many n ∈ W∞.

This completes proof of Proposition 3.2.

4 Sign Changes Using the Generalized Euler’s Function

Let r, s ∈ N with r ≥ 2. Throughout this section, we put F (n) = φs (n) and G (n) = ns for
n ≥ 1, where φs is the Jordan generalization of Euler’s function. We will study the sign changes of
prφs (n)− pr−1n

s, where n ∈ W∞. At the end of this section, consider the difference φ1(n)− 2tp,
where t ≥ 1 and p is prime.
Theorem 4.1. Let pr and s be as above. There exist infinitely many n ∈ W∞ such that prφs (n) > pr−1n

s.

Proof. First, we put pr−1 + 1

pr−1
= 1 + δr, where δr =

1

pr−1
. We prove that there exists an unlimited

prime number pu for which,
pu

pu − 1
= 1 + ϕ, (33)
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where for some unlimited positive integerω it holds that ϕ ≤ δr
ω

≃ 0. In fact, in the casewhere pr is
limited, we observe that pu can be any unlimited prime number. Hence, pu

pu − 1
= 1+ϕwith ϕ ≃ 0,

and so ω =
1√
ϕ

≃ +∞. In the case where pr is unlimited, i.e., δr is infinitesimal. Here, we let the

prime number pu large enough (for example, pu > p2r−1) such that pu
pu − 1

= 1 +
1

pu − 1
= 1 + ϕ,

where ϕ =
a

pu
with a ∈ Q∗

+ is appreciable. Thus, ϕ <
a

p2r−1

, and hence, pr−1

a
ϕ < δr from which it

is immediate that ω =
pr−1

a
≃ +∞. This proves (33).

Second, let δr be as above and define the following internal set,

Xr = {m ∈ N : (1 + ϕ)
m

< 1 + δr} ,

where ϕ satisfies (33). We must prove thatXr contains an unlimited positive integerm0. We first
show that Nσ is a subset of Xr. Indeed, there are only two possibilities to categorize:

Case 1: When pr is limited, that is, δr is standard. For every limited positive integerm,
(1 + ϕ)

m
= 1 + ε for some infinitesimal positive ε. Thus, it is clear that m ∈ Xr since

ε < δr.
Case 2: When pr is unlimited, that is, δr is infinitesimal. For every limited positive integer m,

we see that
m∑
i=2

Ci
mϕi−1 ≃ 0 because m is limited and ϕ is infinitesimal. On the other

hand, we get,

(1 + ϕ)
m

= 1 +

m∑
i=1

Ci
mϕi

= 1 +mϕ+

m∑
i=2

Ci
mϕi

= 1 +

(
m+

m∑
i=2

Ci
mϕi−1

)
ϕ

< 1 + ωϕ

≤ 1 + δr.

This proves that Nσ is a subset of Xr. Therefore, by Cauchy’s principle there exists an
unlimited positive integerm0such thatm0 ∈ Xr.

Finally, it suffices to prove that there exists a positive integer n0 ∈ W∞ such that
prφs (n0) > pr−1n

s
0. In fact, if such integer n0 exists, then by (8),

φs

(
ni
0

)(
ni
0

)s =
φs (n0)

ns
0

>
pr−1

pr
,

and so prφs

(
ni
0

)
> pr−1

(
ni
0

)s for every i ≥ 1. Assume byway of contradiction, that for
alln ∈ W∞, we have prφs (n) ≤ pr−1n

s. In particular, forn = pupu+1 . . . pu+m0−1 ∈ W∞
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we get,
pr

pr−1
≤ ns

φs (n)
=

ns

ns
∏
p|n

(
1− 1

ps

)
=
∏
p|n

ps

ps − 1
≤
∏
p|n

p

p− 1

≤
(
min
p|n

(
p

p− 1

))ω(n)

=

(
pu

pu − 1

)m0

= (1 + ϕ)
m0 <

pr−1 + 1

pr−1
,

where the last inequality comes from the fact that m0 ∈ Xr. Hence, pr < pr−1 + 1,
which is a contradiction.

This completes the proof of Theorem 4.1.
Theorem 4.2. Let r, s ∈ N with r is unlimited and s is limited. Then, prφs (n) < pr−1n

s holds for
infinitely many n ∈ W∞.

To prove this theorem, we will make use of the following lemma.
Lemma 4.1. Let r, s ∈ N with r ≥ 2. If n /∈ Ar,s, thenmn /∈ Ar,s for everym ≥ 1.

Proof. Letm,n be two positive integers such thatmn ∈ Ar,s. Then,
pr−1

pr
<

φs (mn)

(mn)
s =

∏
p|mn

ps − 1

ps
≤
∏
p|n

ps − 1

ps
=

φs (n)

ns
,

and therefore n ∈ Ar,s.

Proof of Theorem 4.2. Since pr
dr−1

is unlimited and s is limited, for every limited prime number p
we see that, (

pr
dr−1

) 1
s
≥ p. (34)

It follows from Cauchy’s principle that (34) holds for some unlimited prime pm. That is,(
pr

dr−1

) 1
s
≥ pm,

and so,
pr − pr−1

pr
≤ 1

psm
.

Or, equivalently, pr
pr−1

≤ psm
psm − 1

, which gives pr (psm − 1) ≤ pr−1p
s
m, i.e., prφs (pm) ≤ pr−1p

s
m .

Hence, pm /∈ Ar,s by (10).
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Now, let ω ∈ W∞ be unlimited. By Lemma 4.1, ωpm /∈ Ar,s. That is, prφs (ωpm) ≤ pr−1 (ωpm)
s.

On the other hand, since pr, pr−1ωpm are odd and φs (ωpm) is even, we conclude that
prφs (ωpm) ̸= pr−1 (ωpm)

s. Thus, prφs (ωpm) < pr−1 (ωpm)
s. This proves that there are infinitely

many n ∈ W∞ for which prφs (n) < pr−1n
s and so the result.

Corollary 4.1. Let s ≥ 1. There are infinitely many r ≥ 2 for which Ar−1,s contains infinitely many
n ∈ W∞.

Proof. First of all, we prove that there are infinitely many r ≥ 2 such that Ar,s ⊂ Ar−1,s. In fact,
by Theorem 2.3, there are infinitely many good primes. Let pr−1 be a prime of this form, where
r ≥ 4. That is, p2r−1 > pr−2pr. If n ∈ Ar,s, then,

ns

φs (n)
<

pr
pr−1

<
pr−1

pr−2
.

Therefore, pr−1 φs (n) > pr−2n
s, i.e., n ∈ Ar−1,s and so Ar,s ⊂ Ar−1,s . Moreover, by Theorem 4.1,

there are infinitely many n ∈ W∞ such that n ∈ Ar,s since Ar,s has at least an element n0 ∈ W∞
and by (8) we have ni

0 ∈ Ar,s for every i ≥ 1. Thus, there are infinitely many n ∈ W∞ such that
n ∈ Ar−1,s. This completes the proof.

As before, for a positive integer nwe put σ (n) for the sum of its divisors.
Definition 4.1. A number n is said to be multiply perfect if σ (n) = kn for some positive integer k. Here,
n is also called a k-perfect number.

Theorem 4.3 ([20, p. 173]). If p is prime, n is p-perfect and p does not divide n, then pn is (p+1)-perfect.

Note that it is possible to create higher-order perfect numbers from lower-order, based on The-
orem 4.3. A simple search withMaple, we see that σ (459818240) = 3 ·459818240. Thus, 459818240
is 3-perfect which is not divisible by 3, and by the same theorem, 3 · 459818240 = 1379454720 is
4-perfect, which is true since σ (1379454 720) = 4 · 1379454720.

We have the following result.
Theorem 4.4. Let r, s ∈ N with r is unlimited and s is limited. There exists a multiply perfect number N
for which prφs (N) ≤ pr−1N

s. That is, such multiply perfect N /∈ Ar,s.

Proof. Let p be a limited prime number and letN be a p-perfect number. We distinguish two cases:

Case 1: If p does not divide N , then from Theorem 4.3, the number pN is (p + 1)-perfect. On
the other hand, from the Prime Number Theorem we see that,

(
1 +

pr−1

dr−1

)1

s ≃ +∞,

because r is unlimited and s is limited, from which it is immediate that,

(
1 +

pr−1

dr−1

)1

s
> p. (35)

This means that pr (ps − 1) < pr−1 · ps, and so p /∈ Ar,s. From Lemma 4.1, pN /∈ Ar,s.
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Case 2: If p divides N , then there exists a positive integer a such that N = pa. Since p /∈ Ar,s, it
follows from Lemma 4.1 that pa = N /∈ Ar,s.

Thus, in both cases, there is a p-perfect number or a (p+ 1)-perfect number N such that
N /∈ Ar,s. This completes the proof of Theorem 4.4.
Corollary 4.2. If r is unlimited and s is limited, then prφs (n)− pr−1 n

s changes sign for infinitely many
n ∈ W∞.

Proof. By Theorems 4.1, the inequality prφs (n) > pr−1 n
s holds for infinitelymany n ∈ W∞ when-

ever r ≥ 2 and s ≥ 1. On the other hand, by Theorem 4.2 the inequality prφs (n) < pr−1 n
s holds

for infinitely many n ∈ W∞ whenever r is unlimited and s is limited.

Let P be the set of all primes, and let l be a positive integer. We have the following result:
Proposition 4.1. Let r ∈ N with r ≥ 2. Let A be an infinite external subset of positive integers such that
W∞ ⊂ A, and let f : A −→ R be a multiplicative function satisfying the following conditions:

• f is strictly increasing on the set P ∩A.

• For each u, v ∈ A,

f (uv)

uv
≤ f (u)

u
< 1. (36)

• For all primes p, q ∈ A with p ≤ q, we have,
q

f (q)
≤ p

f (p)
,

p

f (p)
− q

f (q)
≃ 0.

(37)

Then there exists a finite set of positive integers {n0, n1, . . . , nm} ⊂ W∞ such that
pr (f (ni) + l) > pr−1 ni, for i = 0, 1, . . . ,m withm ≃ +∞.

Before presenting the proof of Proposition 4.1, the following lemma gives an example on the
existence of the above function.
Lemma 4.2. Let A be the subset of positive integers n for which any divisor d of n (d ̸= 1) is unlimited
(i.e., if n = qα1

1 qα2
2 . . . qαss , where q1, q2, . . . , qs are distinct primes and α1, α2, . . . , αs ∈ N are positive,

then n ∈ A if and only if qi ≃ +∞ for i = 0, 1, . . . , s). For every t ∈ N∗ limited, define the arithmetic
function φt : A −→ R by,

φt (n) = n
∏
p|n

(
1− t

p

)
.

Then (A,φt) satisfies the conditions of Proposition 4.1.

Proof. Weprove this lemma as follows. By theway of contradiction assume thatA is internal. Since
pn /∈ A for any standard n, we conclude from Cauchy’s principle that pω /∈ A for some unlimited
integer ω. This is a contradiction. Further, by the definition of Awe deduce thatW∞ ⊂ A.
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Next, φt is multiplicative and strictly increasing on the set P ∩ A since φt (uv) = φt (u)φt (v)
for any u, v ∈ Awith (u, v) = 1 and φt (p) < φt (q) for any primes p, q ∈ Awith p < q.

Let u, v ∈ A. Since uv ∈ A, it follows that,

φt (uv)

uv
=
∏
p|uv

(
1− t

p

)
≤
∏
p|u

(
1− t

p

)
=

φt (u)

u
,

which gives,

φt (uv)

uv
≤ φt (u)

u
< 1.

Let p, q ∈ A be two primes such that p ≤ q. Then,
q

φt (q)
=

q

q − t
≤ p

p− t
=

p

φt (p)
,

p

f (p)
− q

f (q)
= t

(
1

p− t
− 1

q − t

)
≃ 0.

This proves the conditions stated in Proposition 4.1.

Proof of Proposition 4.1. The proof is illustrated as follows. First, we prove that there exists a posi-
tive integer n0 ∈ W∞ such that pr (f (n0) + l) > pr−1 n0. Assuming the contrary, that is, for every
n ∈ W∞ we have pr (f (n) + l) ≤ pr−1n. By (36) and (37), there exits pm ∈ N unlimited prime
such that, 

pm
f(pm)

= 1 + ϕ,

ωϕ ≤ 1

pr−1
,

for some ω ≃ +∞ and ϕ ≃ 0. Define the set,{
a ∈ N :

(
pm

f (pm)

)a

<
pr−1 + 1

pr−1

}
, (38)

which is internal and containing Nσ . From Cauchy’s principle, there exists an unlimited integer
a0 such that, (

pm
f (pm)

)a0

<
pr−1 + 1

pr−1
.

Now, we set n = pmpm+1 . . . pm+a0−1, that is, n ∈ W∞. By the first condition of (37) we obtain,
pm+i

f(pm+i)
>

pm+i+1

f(pm+i+1)
, for i = 0, 1, . . . , a0 − 2.

Since f is multiplicative, it follows from the induction hypothesis that,

pr
pr−1

≤ n

f (n) + l
<

n

f (n)
=

a0−1∏
i=0

pm+i

f (pm+i)
<

(
pm

f (pm)

)a0

<
pr−1 + 1

pr−1
, (39)

Thus, from the first and the last inequality of (39) we get pr < pr−1 + 1, which is absurd.
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Finally, let n0 = qα1
1 qα2

2 . . . qαm
m ∈ W∞ such that pr (f (n0) + l) > pr−1n0, where q1, q2, . . . , qm

are prime numbers such that q1 < q2 < . . . < qm, m, q1 ≃ +∞ and α1, α2, . . . , αm are positive
integers. If we put ni =

n0

qi
(1 ≤ i ≤ m), then ni ∈ W∞. Moreover, by (36) we get,

f (ni) + l

ni
≥ f (niqi) + l

niqi
>

pr−1

pr
,

for 1 ≤ i ≤ m. Thus, pr (f (ni) + l) > pr−1ni for 1 ≤ i ≤ m.

Proposition 4.1 is proved.

In the following theorem we study the difference φ(n) − 2s · p ([11]), where n is a composite
unlimited integer, s ≥ 1 is limited and p ∈ P is unlimited.

Recall that Fermat numbers are known by their formula: Fn = 22
n

+1. The numbers F0, F1, F2,
F3 and F4 are the only known Fermat primes. Moreover, we do not know whether Fn is prime for
some n > 4.
Theorem 4.5. Let n be one of the natural numbers.

(i) An unlimited composite odd integer which is not divisible by any Fermat primes.

(ii) The product of certain Fermat primes and an unlimited composite odd integer which is not divisible
by any Fermat primes.

Then, φ(n) is not of the form 2sp, where s ∈ N is limited and p ∈ P is unlimited.

We prove the following lemma:
Lemma 4.3. Let n = ω1ω2, where ω1, ω2 ∈ N are unlimited. Then, φ(n) has the same form.

Proof. From the definition of φ, we can immediately deduce that φ(n) is unlimited if and only if n
is unlimited. Therefore,

φ(n) = φ(ω1)φ(ω2)
d

φ (d)
,

where d = (ω1, ω2). We point out two cases:

Case 1: When d is limited. Since φ (d)divides φ(ω1), φ(n) is equal to the product of two unlim-
ited integers: φ(ω1)

φ (d)
and φ(ω2)d.

Case 2: When d is unlimited. Since φ (d)divides φ(ω2), φ(n) is also equal to the product of two
unlimited integers: φ(ω1) and

φ(ω2)

φ (d)
d.

The proof is done.
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Proof of Theorem 4.5. We prove our theorem as follows:

Let n be unlimited such that φ(n) = 2sp, where s is limited and p is unlimited prime number.
From Lemma 4.3, n cannot be equal to the product of two unlimited positive integers. Thus, we
must have n = ap′ with a ≥ 2 is limited and p′ is unlimited prime number. We study the two
cases:

Case 1: Assume thatn satisfies (i). Sinceφ (n) = φ(ap′) = φ(a) (p′ − 1) = 2sp and (p, φ(a)) = 1,
it follows that (p′ − 1) is divisible by p. Thus, there exists t ∈ N such that φ(a)t = 2s.
That is, φ(a) is a power of 2. On the other hand, by using the result stated in [13,
Problem 533, p. 72], the integer a must be of the form 2νF0F1 . . . Fm, where ν ≥ 0 and
Fj = 22

j

+ 1 are Fermat primes for j = 0, 1, . . . ,m. This means, the integer n is either
even or divisible by some Fermat prime Fj with j ≥ 0, contradicting the hypothesis.

Case 2: Assume that n satisfies (ii). If n is divisible by an unlimited Fermat prime, then φ(n) is
equal to the product of two unlimited integers, which is impossible. Therefore,
n =

m∏
j=0

Fjb, where b satisfies (i) and (Fj)0≤j≤m are limited Fermat primes for some

m ≥ 0. Since (
m∏
j=0

Fj , b) = 1, it follows that φ(n) is of the form 2sφ(b). By using the case

(i), φ(b) is not of the form 2sp. Therefore, it is the same for φ(n). This is a contradiction
as well.

Theorem 4.5 is now completely proved.

5 Conclusion

The present study deals with Diophantine inequalities using positive integers having suffi-
ciently large number of distinct prime factors. In fact, by using the Prime Number Theorem,
Dirichlet’s Theorem about primes in an arithmetic progression and Bertrand’s theorem, we have
proved in several cases that prF (n)−pr−1G (n) is both positive and negative infinitely often, where
pr denotes the r-th prime number, F and G are two number-theoretic functions and n ∈ N has
a sufficiently large number of distinct prime factors. These number-theoretic functions are to be
chosen multiplicative such as the Kernel and the Euler’s function of the positive integer n.

As an application of nonstandard analysis, this work also includes some study using posi-
tive integers having unlimited number of distinct prime factors. More precisely, we have studied
the same expression by using infinite external subsets of Wk. Indeed, we showed also that that
prγ

N (n)− pr−1 γ
N (n+ l) and prφs (n)− pr−1n

s change sign on some infinite subsets A ⊂ N.

For further research, we propose the following questions:

1. Recall that a powerful number is a positive integer n such that if a prime p divides n, then
p2 divides n. We ask if there is an infinite subset A ⊂ Wk such that for any n ∈ A, one has:{

prγ
N (n) > pr−1 γ

N (n+ l), if n is powerful,
prγ

N (n) < pr−1 γ
N (n+ l), otherwise.

2. Does prφs (n)− pr−1n
s change sign for infinitely many n ∈ W∞?
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